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Arsenic in the Environment

• Arsenic not rare in the environment
– “average soil”: about 10 mg As/kg

• Toxic environmental effects associated with 
arsenic not rare.
– Effects of arsenic significant even at very low dissolved 

levels
– Effects of arsenic are widespread

Cambodian rice field in As-impacted area



Natural Sources: Arsenic in Groundwater

• Arsenic concentrations in sediments in Bangladesh and Cambodia are not 
high.  In fact, they are frequently below average.

• Chemical Conditions create elevated dissolved arsenic concentrations.
– LANDFILLS (lined and unlined) are not unique, but are reactors in 

which pH and redox conditions are modulated by a combination of 
biological, chemical, and physical processes

• Microbes
• Electron Source (organic matter, H2)
• Terminal Electron Acceptors (Oxygen, Iron(III), Sulfate, CO2)





What Controls Dissolved Arsenic 
Concentrations in Wells?

Iron oxide
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• Arsenic is normally strongly retained by iron minerals
• Microbes change (metabolize) the minerals in the soil and

sediment, thereby releasing arsenic into groundwater.
• Conditions usually are reducing (usually +100 to -100 mV) where

dissolved arsenic is found.
• Organic carbon quality and content critical to the development of

reducing conditions



Arsenic, Iron, and Sulfur Cycling
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Trace Metal Retention and Release
Reduction: 

Me-Fe(OH)3 + OM⇨Me(aq) + Fe2+ + CO2 + H2O

8Me-Fe(OH) + HS- +15H+⇨8Me(aq) + 8Fe2+ + SO4
2-

3 + 20H2O

However…

Fe(OH)3-Me(sorb) FeOOH-Me(sorb) +H2O 

Me(aq) + Fe2+ + HS- FeS-Me(sorb) + H+

2As(aq) + 3HS- As2S3+ 3H+

Pb2+ + HS- PbS + H+

 



Arsenic Sequestration and 
Mobilization in Model Systems

• Oxic systems: Fe(III) oxides and sulfate

• Suboxic Systems: Fe(III) oxides ⇨ Fe(II)aq, sulfate

• Anoxic Systems: Sulfate ⇨sulfide, possibly Fe(III) 
oxides ⇨Fe(II)aq

• Field-Based Studies of As Cycling



Arsenic-Iron-Sulfur Cycling in 3 Field 
Sites

• Coakley Superfund Site (NH)
• Coeur d’Alene Mining District (ID)
• Cambodian Groundwater Systems

Collaborators (Dartmouth): Carl E. Renshaw, 
Jamie L. deLemos, Stefan Stürup, Xiahong Feng

Reference: de Lemos et al. (2005) ES&T



As Source: Overburden-Clay Aquitard
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As Source : Characterization
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Coakley: Arsenic Mobilization & Natural 
Attenuation

30Fe(OH) + C H + 60H+ ⇨30Fe2+ 
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Coakley: Batch Experiments and Field Data
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Coakley: Batch Experiments and Field Data
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Arsenic-Iron-Sulfur Cycling in 3 Field Sites

• Coakley Superfund Site (NH)
• Coeur d’Alene Mining District (ID)
• Cambodian Groundwater Systems

Collaborators: Gretchen Gehrke (Dartmouth),)
Gordon Toevs and Matt Morra (Univ. Idaho)
Scott Fendorf and Matt Polizzotto (Stanford)



Coeur d’Alene (CDA) Mining District, ID

Downstream of the Lateral Lakes



CDA: As Distribution (mg/kg)
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CDA: Dissolved Contaminants
MCL
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Cataldo: Fe 
Speciation

• Most Fe is present as 
amorphous Fe 
(hydr)oxides

• About 20% maximum 
fluctuation with 
season
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Cataldo: As 
Speciation

• Large seasonal 
variation in the 
occurrence of 
reduced arsenic 
phases in Cataldo 
Wetland sediments
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Experimental Studies of Sulfate Redox 
Transformations Coupled to As Levels: Coeur  

d’Alene Mining District

Students:
Andrew N. Quicksall
Samantha Saalfield
Joshua D. Landis Coeur d’Alene River

At Swan Lake, ID



Incubations
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CDA Cataldo 
Lactate Amended
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CDA Cataldo 
Lactate+Molybdate

Amended
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Solids: Fe 
Speciation

Fe(II) mineralization

Siderite present in 
SRB suppressed with 
net loss in FeS

Determined using Fe EXAFS, SSRL 2-3
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Temporal Change

Paired Fe and As 
Release in SRB 

uppressed 
Microcosms

Fe and As were 
sequestered when 
FeRB and SRB were 
active
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Soil 
Chemistry 
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Microbial Ties

• The suppression via molybdate yields strong evidence for SRB
involvement in trace element retention

• Can we explain this observation via direct methods to identify
specific microbial populations?

Sequencing of cloned 16S rDNA soil extracts



Dominant Microbial Species

Lactate + Molybdate
(SRB Suppressed)

Anaeromyxobacter
dehalogenans (100%)

Metal Reducer
Particularly Fe
No S Reducers

Lactate 
(Full Community)

Clostridia (89-91%)

Obligate Anaerobes
Many Can Reduce Fe

Desulfitobacterium 
hafniense (89%)

Can Reduce SO 2-
4



Observations:
• Iron reduction is central to the 

release of trace metals 

• Mineral transformations govern 
trace metal sequestration

Implication:
• Solution Concentrations are 

ultimately governed by 
balanced Fe and S Reduction
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- Mixed constantly for life of experiment

- Represent stagnant or low-flow end-member of 
groundwater systems

- Products accumulate, reactants are depleted – system 
approaches equilibrium
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mineralogy in D. desulfuricans columns?
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By what mechanisms does flow rate affect 
mineralogy in iron oxide-sulfide columns?

Flow rate ~3.5 mL/hr

Flow rate ~6 mL/hr



FA
C

TO
R

S
 D

E
TE

R
M

IN
IN

G
 M

IN
E

R
A

LO
G

Y
What determines which minerals form in 

SRB/FeRB systems?

- Magnetite formation - Magnetite + iron 
sulfide formation



FA
C

TO
R

S
 D

E
TE

R
M

IN
IN

G
 M

IN
E

R
A

LO
G

Y
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stagnant conditions in D. desulfuricans
incubations?

SRBs, 10 mM SO4 No bugs

Only modest changes in Fe mineralogy 
(not enough carbon to reduce all Fe)



Banfield, J, et al.  2005.  Reviews in Mineralogy 
and Geochemistry.  Vol. 59, p 85-108

Sulfide formation in D. 
desulfuricans incubations
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How do changes in δ34S reflect sulfur cycling?
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A more complete description of As fate

Fe(OH)3-As(V,III)

Red,
kFe

Fe2++ As(V,III)aq

SO4
2-

H2S

As2S3(s),
FeS-As

Red,
kSO4

Red,
ks-Fe

FeS, FeS2

FeCO3, 
Fe5(PO4)3(OH)

• It is necessary to include sulfate reduction to adequately 
describe arsenic concentrations.  

• Kinetic processes are critical to regulating arsenic levels



Arsenic-Iron-Sulfur Cycling in 3 Field Sites

Coakley Superfund Site (NH) 
Coeur d’Alene Mining District (ID)
Cambodian Groundwater Systems

Collaborators:
Mickey Sampson (Resources 

Development International, 
Cambodia)

Elizabeth Hadzima
Gretchen Gehrke
Nick Papacostas
Joshua Landis
Jamie de Lemos



Soils and Sediments
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Redox Processes: Sulfate and Iron reduction
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• Redox Conditions indicate that sulfate reduction and/or Fe
reduction is thermodynamically viable, concentration information
indicates the extent to which they have occurred.



Arsenic is associated with waters high in Fe and low in sulfate
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